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FOREWORD 

The Structural Analysis System ( SAS ) Computer Program described 
in this report was developed by Philco Corporation, Western Develop- 
ment Laboratories ( WDL), Palo Alto, California, under contract to 
the Jet Propulsion Laboratory, Pasadena, California ( Contract No. 
950321 ) . 

The program was developed to solve complex structural problems 
by the analytic techniques of the direct stiffness method. The develop- 
ment work by WDL was supervised by Dr. P. R. Cobb with Dr. R. J. 
Melosh as project engineer. The support effort by JPL was under the 
supervision of R. R. McDonald and Dr. M. E. Alper with T. E. Lang 
as project engineer. 

V 
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ABSTRACT 
gsla\ 

The functions and operations of a large capacity Structural Analysis 
System Computer Program developed to analyze frame and shell-type 
structures are described. Included is a summary of the capabilities of 
the program and a discussion of certain of the problems encountered 
in development of the program. The participation of engineering per- 
sonnel in the setup and running of a typical shell problem is outlined. 

1. INTRODUCTION 

The purpose of this report is to describe the functions 
and capabilities of the Structural Analysis System (SAS) 
Computer Program that was developed by Philco Cor- 
poration, Western Development Laboratories ( WDL), 
under contract to the Jet Propulsion Laboratory. The 
original task outlined in the contract was to develop a 
structural analysis program that would have the capabil- 
ity of predicting the static and dynamic behavior of com- 
plex shell-type structures. By complex, here, is meant 
shell structures that may be material-anisotropic, lami- 
nated as in sandwich construction, locally stiffened, 
and/or geometrically irregular. Hence, included are shell 
characteristics that are not amenable to closed-form solu- 
tions or finite difference or numerical integration tech- 
niques. Therefore, an approximate method of analysis 
was selected which has built-in solution convergence to 
exact answers as the structural idealization is refined. 
This method of analysis uses the “finite-element” concept 
and an energy approach. It entails representing a struc- 
ture by an array of substructures (finite elements) that 
are selected to be consistent with the geometric character 

of the original structure. For example, for singly and 
doubly curved shells, a flat triangular plate element is 
a logical element to use in the idealization. 

Using the finite element concept there are two ap- 
proaches to setting up a problem, namely, the force or 
flexibility method and the displacement or stiffness 
method (Ref. 1 and 2). Based on its simplicity, efficiency, 
and generality, the stifhess method was selected and a 
computer program was developed to solve shell problems 
using the IBM 7094 computer. Because of the require- 
ment for having the capability to analyze stiffened shells 
and layered structures, several elements other than the 
triangular shell element were added to the program ele- 
ment library. Thus the final program is applicable in 
analyzing a wide spectrum of structural types including 
truss and frame structures, shells of revolution, and com- 
binations of these. 

In establishing a program development plan compatible 
with contractual requirements, it was decided to divide 

I 

I 
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the effort into sequential tasks (contractual phases) so 
that the initially developed programs could be assessed 
before extending the work scope. This approach was prac- 
tical because the finite element representation had not 
been developed so it was assured that an adequate 
shell representation could be formulated. In this report, 
the program developed under Phases I, la, and I1 of the 
contract is described. The intention here is to present an 
overall picture of the program and its capabilities without 

delving into details on mathematical algorithms, computer 
operations, input-output format, etc. For information of 
this type, two documents have been prepared by WDL 
(Ref. 3 and 4) which are updated as changes and exten- 
sions to the program are made. One additional document 
(Ref. 5 )  that complements the WDL reports and this 
report summarizes the test problems and associated 
input-output data that were used in final checkout of 
the SAS program. 

II. DESCRIPTION OF THE STRUCTURAL ANALYSIS SYSTEM PROGRAM 

The computer-oriented Structural Analysis System 
(SAS) is based upon the analysis techniques of the direct 
stiffness method. In applying this method a given struc- 
ture is idealized by an array of subelements that approxi- 
mate the local structure they represent. For a shell 
structure, the flat triangular shell element having mem- 
brane and bending stiffness is well suited for the ideal- 
ization. Hence, in applying this method, any shell is 
approximated by a polyhedron of triangles in which dis- 
placements and forces are specified or determined at the 
apexes or nodes of the triangles (see Fig. 1). 

unknown or prescribed at each node (see Fig. 2), and 
if unknown are calculated in solving the problem. The 
number of nodes is dependent on the triangle grid array 
selected to represent the structure. For a fine grid array, 

If a triangle is arbitrarily oriented with respect to a set 
of overall coordinate axes, then six independent variables 
are required to describe the deflection of a node (three 
displacements and three rotations). These deflections or 
their complement in forces and moments are either 

4= 

-TYPICAL NODE 

Fig. 1.  Triangular grid array of a spherical shell 

( a )  DEFLECTIONS X 

% (b) FORCES 

Fig. 2. Node deflections and forces 
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which is generally required in shell representations, a 
4. Gravity loading vectors from imposed acceleration large number of nodes results. -4n upper limit on the 

number of unknowns of the problem is six times the num- 
ber of nodes. Hence, a typical shell problem inherently 5. System mass matrices for uniformly distributed 
involves solving a large number of simultaneous equa- 

states, 

mass, and the 
tions which easily can- exceed core capacity of even -the 
largest modem digital computers. Therefore, in the SAS 6. Small deflection buckling stiffness matrices. 

it was necessary to supplement in-core storage with mag- 
netic tape and/or disk storage. Implementing this data- 
storage technique requires data to be input and output 
from the core of the computer in convenient block sizes 
as the calculations are performed, in order not to exceed 
core capacity. Thus, certain of the SAS subprograms use 
the tape-core coupling technique in which data is input 
in small blocks from tape to core. As the calculations are 
completed, the output is stored on tape in like manner 
or retained in core if it fits and is part of the next calcu- 
lation. With this arrangement there is virtually no limit 
on the amount of data storage capacity; however, the 
core-tape coupling involves significant data handling and 
transfer times. 

For some manipulative operations, the amount of data 
normally is small so the operations can be performed 
in-core. This, of course, restricts the applicability of the 
algorithm; however, in many instances there are alternate 
schemes of combating this capacity problem, or the prob- 
lem is not acute. In the SAS, for example, the subprogram 
used to compute characteristic roots in an eigenvalue 
problem is limited to in-core operation. However, even 
within this constraint, 130 roots and vectors can be 
computed simultaneously, which for most problems, is 
adequate. 

To completely automate a structural analysis, the com- 
puter program must be set up to perform two basic 
functions; namely, generate the stiffness and stress ma- 
trices and loading vectors, and then perform the manipu- 
lations necessary to solve for the unknowns. 

This generation phase is represented by two subpro- 
grams or links in the program library. These links have 
Lade names BILD and BUKL and involve several gen- 
eration functions which are outlined in Fig. 3 and 4. 

As noted in Fig. 3, the structural elements in the library 
of the generation subprograms include the beam, bar, 

GENERATION SUBPROGRAM 
RlLD 

1 

pq 
LOAD VECTORS 

I- I -  I-  - - 
SHEAR BEAM, 
BAR, TORQUE 

PRESSURE I MASS 1 
I '  I 

k z r i  TRUNCATED 

Fig. 3. Generated data and library of elements in the 
BILD subprogram of the SAS 

I GENERAT ION SUBPROGRAM 
BUKL 1 

The first function, the generation phase, is performed L Z k l  - 
MATRICES 

STIFFNESS 

by the computer only if geometric and materials data are 
input to the program. From these input data the SAS 
program generates the following: 

I MATRIX 1 
1. Element stiffness and stress matrices, 

2. Fixed node forces due to temperature profiles and 
gradients, 

BEAM, BAR 
TORQUE TUBE 

TRIANGULAR 
SHELL FACET 

3. Equivalent node forces due to uniform pressure Fig. 4. Generated data and library of elements in the 
BUKL subprogram of the SAS loads, 
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MANIPULATIVE SUBPROGRAMS 
OF THE SAS 
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I 
DATA 
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SORTING OF MATRIX 
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(SORT) LTC 
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OUTPUT 
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Fig. 5. Manipulative subprograms of the SAS 
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torque tube, triangular shell facet, shear beam, and trun- 
cated cone; these may be used in any combination in a 
structural idealization. 

The second function of the SAS is to manipulate 
mathematically the generated data to determine the 
unknowns of the problem. This manipulative phase is 
currently made up of 17 subprograms. Five of the sub- 
programs perform standard matrix algebra; namely, 
multiplication, addition and subtraction, transposition, 
triangular decomposition, and row-column partitioning. 
Five others perform functions on simultaneous equations. 
Included here are subprograms for: 

1. 

2. 

3. 

4. 

5. 

Solving simultaneous algebraic equations, 

Finding roots and vectors of the dynamic matrix 
equation, 

Calculating root loci for a set of simultaneous equa- 
tions under a variable change, 

Solving the second order matrix differential equation 
with discretized or certain functional forcing func- 
tions, and 

Calculating the fundamental eigenvalue and asso- 
ciated vector of a matrix (used in the buckling 
calculation). 

The seven remaining subprograms of the manipulative 
set are special-purpose programs for input and output of 
data, and for carrying out manipulations particular to the 
data format used in the S.4S. The 17 manipulative sub- 
programs are listed in Fig. 5, together with information 
on subprogram identification and data-size restrictions. 
The subprograms having “serial option” blocks are set up 
to perform multiple operations in the function represented 
by the parent block. For example, serial multiplication is 
a subprogram option that allows sequential multiplication 
of matrices without writing separate instructions for each 
step. 

Sequencing the computational steps to carry out a prob- 
lem solution is accomplished by writing a set of instruc- 
tions. This set of instructions is called the “pseudo 
instruction program.” Conceptually, pseudo instructions 
are quite similar to FORTRAN instructions, the only 
difference being that a pseudo instruction calls for a 
matrix operation rather than a discrete operation. One 
pseudo instruction is required for each matrix operation 
that is to be performed (excepting the “serial” options). 
For example, to multiply two matrices, one pseudo in- 
struction is needed which contains information on where 
the two matrices are located (either in core or on pre- 
scribed tapes), the operation to be performed (multipli- 
cation in this instance) and where the resultant (product) 
matrix is to be stored (in core or on tape). The actual 
pseudo instruction for this operation would be of the 
form of Fig. 6. 

Interpretation of this instruction is: read into core 
matrix KAR001, which is on Tape 9, Location 1, and mul- 
tiply it by matrix MRR001, which is in core. Designate 
the product matrix PRROOl and store it on tape 10, loca- 
tion 3. 

A Master Intelligence System (MIS) in the core of the 
computer is the monitor system that controls the execu- 
tion of the pseudo instructions. For the multiplication 
operation outlined above the procedure is the following: 

1. 

2. 

3. 

Upon completion of the pseudo instruction prior to 
multiplication, control is given to the MIS. 

MIS reads the next pseudo instruction (multiplica- 
tion instruction) from the pseudo program tape and 
determines the tapes that will be needed and the 
function to be performed. 

MIS positions all of the tapes involved (tape 9 at 
location 1, tape 10 at location 3), so that the next loca- 
tion on the tape is either the start of the input data 
for the operation or space for the output. 

Fig. 6. Example pseudo instruction 

5 
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4. MIS then locates on the SAS library tape the sub- 
program that performs the operation (MULT), and 
brings this subprogram into core. 

5. Control is then shifted to this subprogram (MWLT), 
which calls for the input matrices (KAR001, 
MRROOl), performs the calculation (multiplication), 
and locates the resultant matrix (PRR001) in core or 
on tape as specified. 

6. Control is then returned to MIS and the process is 
repeated with the next pseudo instruction. 

Generally, a pseudo instruction program for structural 
analysis varies little from problem to problem, so that once 
an efficient program is written it becomes a standard part 
of the input data for any structural problem. 

Noting the example pseudo instruction given previously, 
it can be observed that specification of data storage tapes 
is an integral part of each pseudo instruction. This option 
requires greater user knowledge in setting up a pseudo 
instruction program than if tape assignments were speci- 
fied internal to the program; however, the system has 
greater applicability through use of this scheme. By user 
discretion, certain key data can be stored on tapes that 
will be saved after coinpletion of computations on the 
computer. These data are then available for subsequent 
runs, thus avoiding complete regeneration of data. For 
example, in a structural problem the summed stiffness 
matrix should be saved if any one of the following con- 
ditions is suspected: A nonrecoverable error might occur 
in calculations that follow the generation phase, and com- 
putations are terminated by the computer; a few elements 
of the structure are likely to be redefined subsequent to 
current calculations; or additional loading states are likely 
to be defined subsequent to current calculations. Another 
advantage in assigning tapes is that the program is made 
amenable for operation on different computer systems 
and is operable when one or more tape units are removed 
from the system for repair. 

In assigning data storage tapes in a pseudo instruction 
program, it is efficient to store data on a number of tapes 
rather than on one or two. The reason is that a search of 
a tape for particular data is reduced if the number of data 
groups on the tape is small. In the JPL computer system, 
seven tapes are available for data storage during program 
execution (Fig. 7). For the moderately long problems that 
have been run to check out the SAS program (20 to 50 
pseudo instructions), three to five tapes have been used 
in which one or two of these were saved for recovery 
purposes. 

For a given computer complex, if an adeqmite number 
of tapes are available, then the SAS program library (17 
subprograms) should be divided onto two or more tapes 
to reduce search times. For example, the JPL computer 
system has 18 tape consoles, so that two tapes are avail- 
able to store the SAS library (Fig. 7, tapes A4 and B5). At 
program initiation, the Master Intelligence System is read 
from one of the SAS library tapes into core, at which time 
it takes control of the computer to perform functions 
already described. The disk file shown in Fig. 7 is used 
to store the computer systems library, which, however, is 
also currently stored on tape A3 as a backup. Eventually 
the entire SAS program will be adapted to disk storage, 
since by this mode of data storage, search times are 
reduced greatly over those for magnetic tape. 

Because of the sequential nature of the calculations 
characterized by the pseudo instruction program, it is pos- 
sible to restart calculations at any point in the pseudo 
program provided the data generated to this point have 
been stored on tape. This feature of the SAS is termed 
the “recovery feature” and is predicated upon the writer 
of the pseudo instruction program planning, in advance, 
recovery points based upon likely locations for errors in 
the calculations. To support this feature, instructions may 
be given to computer operators to save certain tapes and 
then to remount these tapes the next time the program 
is run. 

Related to recovery is the recoverable error option. In 
the SAS, it is possible to set up a matrix calculation and 
provide alternate calculations if the matrices are actually 
larger than core. When too large a matrix is found a 
recoverable error occurs. The recoverable error option 
allows for shifting from the subprogram for in-core cal- 
culations to the subprogram for larger-than-core calcula- 
tions without stopping the calculations and resubmitting 
the problem. This error option could have been auto- 
mated in the program by action based upon the result 
of a test on matrix size; however, because of the sacrifice 
in core space and the infrequent occurrence of matrices 
of sizes bordering on core capacity, error recovery was 
made a user option. 

The recoverable error option is also important when 
several problems are stacked for one run on the computer. 
By use of this option any error in an early calculation will 
not terminate calculations in subsequent problems. 

Having given a descriptive summary of the functions 
and operation of the SAS program, we now present a 
summary of the capabilities of the system. 

6 
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Fig. 7. Core, disk file, and tape assignments of SAS on the JPL computer (IBM 70941 
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111. CAPABILITIES OF THE SAS PROGRAM 

As indicated in Section 11, the SAS program performs 
two basic operations, namely, generation of structural 
data and manipulation of data in matrix format. Since 
these two functions are mutually exclusive they may be 
considered separately in defining system capabilities. First 
we will consider the “generation phase” of the SAS. 

The program was originally planned to analyze com- 
plex shell structures; therefore, emphasis was placed on 
developnient of a flat triangular shell element applicable 
for idealizing shells. However, a structure requiring ideal- 
ization by triangular elements can also have other ele- 
mental members such as stiffeners or flanges, so that 
several additional elements have been added to the SAS 
library of elements. Thus, the BILD subprogram can gen- 
erate structural data in matrix format for several struc- 
tural types, retaining, in the process, consistent node 
identification so that the elemental matrices may be super- 
imposed to provide a representation of the composite 
structure. The characteristics of each of the elements 
in the SAS library may be summarized as follows (Fig. 3): 
The beam-bar-torque tube element can have arbitrarily 
shaped cross sections, provided the shear center and/or 
twist center are coincident with the principal longitudinal 
geometric axis. This element representation optionally in- 
cludes the effects of shear deflection and rotary inertia, 
and each element can be supported by any of several 
types of end constraints. The “shear-beam” element dif- 
fers from the beam element by a loading state that 
includes a shear stress distribution along the length of 
the beam at one outer surface. This element representa- 
tion incorporates a coordinate transformation so that the 
axis of bending is parallel to, but need not be coincident 
with, the principal geometric axis of the element. Thus, 
this element models the behavior of a nonsymmetric 
stiffening member. 

The triangular-plate element can represent a structure 
having aeolotropic material properties (13 independent 
constants in the constitutive equations), varying elastic 
moduli with temperature (interpolation and extrapolation 
of a material properties table), and varying thickness 
and/or density properties. A restriction on this element 
representation when the material is nonisotropic is that 
the principal material axes must align with prescribed 
geometric axes unless a transformation of the constitutive 
equations is made prior to use in the SAS program. The 
triangular element can be used in representing laminated 
or layered multidimensional structures. 

The conical element which is derived in Ref. 6 is used 
to analyze shells of revolution when the loading on the 
shell can be prescribed by a truncated Fourier Series. 
Orthotropic materials may be analyzed, provided the 
principal material axes align with the principal geometric 
axes of the shell. The effects of shear deflection and rotary 
inertia can be included in analyses with this element. 

In generating the structural data by use of BILD, the 
stiffness and loading matrices are read onto tape in 127- 
word blocks (120 words of data and 7 words of identifi- 
cation) so that the core of the computer is not filled. 
Therefore, theoretically any number of individual ele- 
ment matrices can be generated; however, an upper limit 
has arbitrarily been set at 999 elements in a single pass 
since this is the limit of assignable matrix numbers. 

Equivalent node forces are computed internal to the 
program for the elements in the SAS library when sub- 
jected to temperature gradients normal to the neutral 
axes, temperature distributions, uniform accelerations, 
and/or pressure loads. This system capability eliminates 
lengthy manual calculations to define node forces due to 
these types of loads. However, individual equivalent node 
forces may also be input to the system if the analyst 
desires to augment or change the structural loading. 

The generation subprogram BUKL provides capability 
to generate a prestress matrix for certain of the elements 
in the library (see Fig. 4). After superpositioning, the 
resultant matrix is used in the computation of the funda- 
mental buckling mode of the structure. The link POWR 
facilitates calculation of the first buckling load and mode 
when the variable band matrix fits in core. 

It is important to recognize that program restrictions 
on types of structures that can be analyzed is due only 
to the types of elements contained in the program library. 
Provision has been made for adding elements to this 
library without serious revamping of the subroutines in- 
volved. For example, the input and output data formats 
are sufficiently general to accommodate a wide variation 
in possible element format requirements. Additional in- 
formation on the current library elements and on the 
functions and capabilities of the subprograms BILD and 
BUKL may be found in Ref. 3. 

8 
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The capabilities of the manipulative subprograms of the 
S.4S are probably of more general interest than those of 
the generation phase because the manipulative function 
is not restricted to structurally oriented problems. Some 
indication of subprogram manipulative capabilities is 
given in Fig, 5 by the labeling of the subprograms as to 
in-core or larger-than-core operation; however, additional 
information is given below for the basic manipdative 
subprograms including certain restrictions and applica- 
tions. First it should be noted that, as indicated in Fig. 7, 
20,000 words of storage are available in core for general 

6. Addition and Subtraction Subprogram 
(ADDS, SUBS) 

This subprogram provides capability to add or subtract 
matrices in which neither matrix need fit in core. The ma- 
trices need not be square nor must codes of the two 
matrices necessarily match. Serial addition and subtrac- 
tion is arbitrarily limited to 999 matrices similar to multi- 
plication. 

C. Transposition Subprogram fFLIPI 
computational useage with the 32 K core machine. Hence, 
the order of the largest square matrix having all non- 
zero element values that can be placed in core is 
v%@G= 141. In structural problems a matrix of this 
size is rather small so a matrix coding technique, de- 
scribed in Section I\', was adapted to increase the capa- 
bility of in-core computation. Thus, the information given 
below for each manipulative subprogram assumes the 
matrices are coded unless othenlise stated. 

A. Multiplication Subprogram fMULTl 

This subprogram multiplies two matrices together 
where one of the two must fit in core. The multiplication 
is performed by code matching so neither matrix need 
be square or identically coded with the other. If none 
of the row and column codes matches then the product 
is a null matrix. A simple example of the multiplication 
process is shown in Fig. 8. 

Virtually any size matrix can be transposed by this sub- 
program because the operation involves only interchang- 
ing the row and column codes of each element then 
relisting of the array. In a single pseudo instruction only 
one matrix can be transposed; however, a serial transpo- 
sition option is not needed because the transposition is 
generally performed after summing or forming products 
of matrices. 

D. Special Multiplication Subprogram (WASHI 
One function of this subprogram is to partition (with 

attendant element scaling if required) a matrix, say [ M I ,  
by row and column. This is accomplished by forming a 
matrix triple product [TI [ M I  [ T I ,  where the matrix 
[TI is diagonal having either zero or nonzero (unity if 
no scaling is required) valued diagonal elements. The 
parent matrix [h l ]  must fit in core; however, it need not 
be symmetric or square. 

This subprogram can also multiply together uncoded 
matrices; however, the matrices must both fit in core 
simultaneously. Another option of this subprogram is 
serial multiplication in which up to 999 matrices (arbi- 
trary limit) may be multiplied together by a single pseudo 
instruction. row-column partitioning. 

A4dditional functions have been incorporated in this 
subprogram to allow numerical scaling or extracting of 
elements of [MI. This operation is performed by element 
code matching between [MI and a control matrix. The 
parent matrix [ U] is restricted in this operation as in 

u) 1 '  w 
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Fig. 8. Illustrative multiplication operation 
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E. Choleski Decomposition Subprogram fCHlNl where 

The purpose of this subprogram is to define a matrix 
which, when multiplied by its transpose, equals the origi- 
nal matrix. The particular form of these matrices is: one 
matrix has nonzero diagonal and upper off-diagonal ele- 
ments, and the second is the transpose of the first. That is, 

where [0  \ U] is the upper triangular matrix, and 
[0 \ U] " = [ U \ 01 is the lower triangular matrix. The 
advantage in finding the matrix [ 0  \ U] in triangular 
form is that it can be inverted very simply compared 
to inverting matrix [MI directly. Once the inverse of 
[0  \ U] is found, the inverse of [MI is determined by 
multiplication, that is, 

where [0  \ U] is the inverse of [0 \ U]. 

This subprogram is limited to symmetric, positive defi- 
nite, square matrices. Because of the symmetry condition, 
only the diagonal and upper off-diagonal elements of [MI 
must fit in the core of the computer in variable band 
form.' Thus, matrices whose complete array is larger 
than core can be manipulated; however, there is a defi- 
nite upper limit on matrix size based upon the number 
of elements in the upper triangular region and on the 
diagonal. For example, the matrix of the largest order that 
can be manipulated by this subprogram is 6,666, in which 
only the diagonal elements are nonzero. Any matrix hav- 
ing nonzero off-diagonal elements must be of lesser order 
than 6,666 to fit in core. 

A typical application of the decomposition function is 
in solving the dynamic matrix equation. The fundamental 
form of the equation is: 

where, in general, the matrices [MI and [K] are square 
and symmetric. By means of the CHIN subprogram we 
can decompose the stiffness matrix to obtain: 
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'Assuming symmetric matrices the bandwidth of a row is merely 
twice the number of locations between the diagonal element and 
the last nonzero off-diagonal element. In general, the row-band- 
width values should be made minimal to reduce calculations and 
provide for handling of larger order matrices (see Section V). 

1 0  

We now define a modified deflection vector as: 

or 

(6:) = [ 
which when substituted into the dynamic equation yields 

(6*} = '[ o\" p:) 
[MI[ o\" I-' O J 2  

Premultiplying this equation by [0 \ U] - I T ,  we obtain 

[ o\U ]-lTIM] [ ]-'{6*} = a 1 [I1 (6":) 
w- 

where [I] is the identity matrix. The advantage in decom- 
posing the stiffness matrix in the above example is that 
the matrix triple product [0  \ V] - l T  [ M I  [0 \ U] -l yields 
a matrix that is symmetric, provided [MI is symmetric. 
Insuring a final matrix that is symmetric allows subse- 
quent use of more efficient mathematical techniques for 
finding the roots and vectors in solving the problem. The 
alternative to the above approach is to form the matrix 
product [ K ]  - [ M I  which is not symmetric. 

F. Simultaneous Equution Solution Subprogram 
ICHOL, IT€RI 

The CHOL subprogram uses the Choelski triangular 
decomposition technique incorporated in CHIN to solve 
a set of simultaneous equations. The basic operation is 
outlined as follows. Given a matrix equation with ( 6 )  the 
unknowns : 

[KI (6:) = {PI 

the CHOL subprogram calculates the solution as 

where the inverse of [K] is found by the decomposition 
procedure. 

Limitations on the calculation are that the [K] matrix 
must be square, positive definite, and symmetric. Because 
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of the symmetry condition only the diagonal and upper 
off-diagonal elements are read into core (in variable band- 
width) so the total [K] matrix can be larger than core. 
A follow-on phase of the contractual work is to develop 
this subprogram for operation on matrices that do exceed 
core capacity, by performing the necessary calculations 
sequentially so that the problem of filling core is not a 
factor. 

The ITER subprogram also solves the equation 
[K] {S} = {P} but uses the Accelerated Seidel Iteration 
Method. Limitations on this method are that [K] must be 
square, positive definite, and have nonzero diagonal ele- 
ments. However, the matrix [ K ]  need not fit in core nor 
be symmetric. Therefore, the ITER subprogram is capa- 
ble of solving a more general class of equations than 
CHOL, but the computational time for ITER is generally 
significantly greater than that for CHOL. 

Basing the capacity of the programs on the size of [ K] 
is not expressing the true limitation of the system. This 
can be demonstrated very easily. Assume the storage re- 
quired for the diagonal and upper off-diagonal elements 
of [ K] exceeds core. A procedure called partitioning can 
be used effectively to allow use of the CHOL subprogram 
in preference to ITER. The original matrix equation to 
be solved is 

[KI (81 = {PI 

Assume this equation is partitioned into two equal parts 
as follows: 

[ K, ,  K,, ] { S 2 f -  ( P 2 , f  

This arrangement is actually an array of two matrix equa- 
tions, namely: 

Kii Ki, S i 1  - Pi1 

Solving the second equation for ( 8 , )  yields 

Substituting into the first equation gives 

In this equation [K] is of the same order as [K,,] and 
[K2J which are one-half the order of the original ma- 
trix [ K]. Thus, CHOL can be used to determine [ K,,] -I,  

then to solve the final equation for (8,) by inverting [XI. 

Thus, it is apparent that by the method of partitioning, 
matrix equations that exceed core storage capacity can 
be solved; however, several matrix manipulations must 
be performed in place of one. 

G. Root Subprogram (ROOTI 
The function of this subprogram is to determine the 

characteristic roots (A) and associated eigenvectors { S }  
from input of the matrix [R], where [R] is defined by 

[[a - rzl] {a> = (01 

Referring back to the derivation of the dynamic equation 
outlined in the CHIN description, it may be concluded 
that 

and 

The algorithm used in this subprogram is Jacobi's Method 
in which requirements on the input matrix [R] are that 
it be square, symmetric, and of order 130 or less. 

H. Second-Order Differential Eguution 
Subprograms (LOCI, DEQSJ 

Consider a second-order matrix differential equation 
of the form: 

The subprograms LOCI and DEQS operate with rh is 
form of equation in two distinct ways. The function of 
the subprogram LOCI is to determine the change in value 
of the roots of the homogeneous equation ({P} = (0)) 
under some parameter variation. Any parameter in any 
two of the three matrices [A], [B], or [C] can be varied 
arbitrarily. The information found by the LOCI subpro- 
gram can be interpreted as the transfer function of the 
system described by the second-order equation. 

The function of the DEQS subprogram is to solve digi- 
tally the second-order equation when the forcing function 
is nonzero. Several functional forms can be selected for 

11 
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the forcing function including the step, ramp, or sinus- 
oidal types. In addition, an arbitrary forcing function can 
be input by representing the time history of the force by 
a sequence of impulses (Fig. 9). The forcing function can 
be an actual force, or a specification of defined displace- 
ments, velocities, or accelerations acting on the system. 
Both the LOCI and DEQS subprograms are limited to 
matrices of 40th order or less. The Muller method is used 
to isolate the roots in the LOCI subprogram, and the 
Runge-Kutta method is used to perform the integration 
in the DEQS subprogram. 

1. Root Extractor Subprogram IPOWR) 
This subprogram uses the power method to determine 

the fundamental root and associated vector of a square, 

symmetric matrix. The matrix is limited to in-core sizes 
in the sense that only the diagonal and upper off-diagonal 
elements in variable bandwidth must fit in core. The 
principal use of this subprogram is to determine the 
fundamental buckling mode characteristics, or the funda- 
mental eigenvalue and eigenvector in a dynamic calcu- 
lation. 

These subprograms comprise the basic manipulative 
package of the SAS program. All are limited to calcula- 
tions with linear systems, and, except for LOCI and 
DEQS, all involve only real algebra. The algorithms used 
in each subprogram are considered efficient for applica- 
tions on digital computers and each is documented com- 
pletely. It is worth noting also that although these 
subprograms have certain limitations and restrictions, by 

I 
h 

Fig. 9. Discretization of nonharmonic force 
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judicious use of symmetry conditions, partitioning tech- 
niques, structural idealization tradeoff s, etc., these con- 
straints can be circumvented in many problems to obtain 
accurate solutions. 

System capability is refiected also in the time expended 
in solving a typical problem. Information is in process of 
being compiled on operation time versus data size for 
each of the subprograms of the SAS; however, at the time 
of this writing the compilation is not complete. Some indi- 
cation of program time-of-operation capability can be 
given by citing the observed results of the Phase I test 
problem, which included both a static and dynamic calcu- 
lation. The dynamic calculation involved finding the flex- 
ural natural frequencies of an unconstrained shallow 
spherical shell. In the setup of the problem it was rec- 
ognized that the low frequency modes possessed a sym- 
metry property that allowed analysis of only one-quarter 
of the shell. This sector was idealized by 38 triangular 
elements having 54 discrete nodes, resulting initially in 
a st ihess matrix of order 324 (Fig. 10). The time used 
to generate the stiffness and mass matrices and s u m  these 
was approximately 2.5 min. Imposition of boundary con- 
ditions, transformation of matrices as depicted in the 
CHIN description, inversion, determination of eigenval- 
ues and eigenvectors, and inverse transformation of the 
vectors required 30 min. Of this time, 5 min were used 
in determining the roots and vectors of an 88th-order 

matrix, 5 min were used in inverting a matrix of 191st 
order, and significant time was used in required pre- and 
post-multiplication operations. In this computation 24 
pseudo instructions were executed. 

The second calculation of the test problem involved the 
computation of deflections and stresses for the same shal- 
low shell used in the dynamic calculation except its outer 
edge was clamped. The loading conditions and shell ge- 
ometry are defined in Section V. The triangular grid array 
selected for the shell is shown in Fig. 11. This array has 
70 nodes, so the initial stifFness matrix order is 420. The 
generation of s&ess and loading matrices and subse- 
quent summation of these matrices for the 108 triangles 
required 3.0 min. Solution of the system of simultaneous 
equations and computation of stresses required 20 min. 
Solution of the simultaneous equations, which were of 
order 307, required 6.0 min to complete. 

Subsequent to the running of these problems several 
modifications have been incorporated in the SAS to im- 
prove its time efficiency in certain areas. For example, 
major changes have been made to the M ULT subprogram 
to reduce its overall operation time. In addition, modifi- 
cations to ADDS, SUBS, SORT, CHOL, CHEX, ROOT, 
'IT'ASH, and BILD are either in process or are planned 
to increase their capabilities. 

13 
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IV. REVIEW OF OBJECTIVES IN PROGRAM DEVELOPMENT 

A. Techniques of Achieving a "6alanced" Program 

The word balanced is used here to imply development 
of a computer program that possesses equality in level of 
performance in the areas of complexity of the problems 
that can be solved, the time expended in computations 
and data handling, and the accuracy achieved in the 
results. In a contractual sense, expressing this condition 
by explicit constraints is very difficult to do except to set 
guidelines to dissuade strong effort in one area with 
obvious disregard for other of the major problem areas. 
It is felt that this balance of operations, so difficult to 
assess except by observation of the final product, has been 
achieved in the SAS program and is a definite credit to 
the developers of the program. 

In initial definition of program development objectives, 
deciding upon the level of problem complexity was not 
difficult because of several natural limits. First, consider- 
ing the triangular element, it has six variables per node 
(as compared with two for a planar beam element), so 
that any significant problem will entail use of a large 
number of variables. Hence, it was established that the 
program would be designed to solve, efficiently, structural 
problems in which the stiffness matrices varied from 
100th to 2,500th order. For matrices smaller than 100th 
order the calculations can be performed easily in-core, for 
which many structural analysis systems are available. For 
matrices larger than 2,500th order, the capacity of present 
computer systems is probably exceeded, in that the time 
required for problem solution becomes excessive and 
accumulating errors are likely to destroy all accuracy. 
Hence, the SAS is designed to handle what may be 
termed intermediate-sized matrix problems. 

Within these constraints on size, core capacity may be 
exceeded in a single calculation; hence subprogram logic 
must be formulated for in-core as well as larger-than-core 
calculations. When core is filled the only way to account 
for remaining data is to use auxiliary storage. It is well 
known that when auxiliary magnetic tape storage is 
coupled with in-core calculations the computational time 
increases significantly because of tape search and read 
times. However, presently, there is no alternative but to 
use this storage option so the time for operations must be 
minimized within this constraint. 

In the SAS, time minimizing is achieved by performing 
tape search and rewinding operations on as near a non- 

interference basis as possible consistent with the JPL 
computer system. Every advantage has been taken of 
current computer capabilities to minimize tape sequenc- 
ing; however, this remains a major contribution to total 
computational time. Within the limitations of the present 
computer system the tape problem could be alleviated by 
writing an independent computer monitor system, specif- 
ically adapted to the SAS. However, this approach is not 
compatible with job sequencing practices at the JPL 
computer center. 

Fortunately the developers of computer hardware rec- 
ognize that this tape-core flow problem is a major limita- 
tion on computer performance. Consequently, they have 
introduced several new components and a new monitor 
system to increase storage capacity and decrease data 
access time. Disk filing reduces data access time and 
increases storage capacity, and the FORTRAN IV mon- 
itor system allows for tape reading and writing while 
calculations are performed in-core (buffering). These im- 
provements are not yet used in the SAS program, but 
when they are incorporated, operation and computation 
times will be reduced significantly. In planning for even- 
tual conversion of the SAS to new monitor systems, the 
developers have used the FORTRAN language (rather 
than machine language) in approximately 95% of the SAS 
subprograms. This strong emphasis on FORTRAN is jus- 
tified not only by the increased simplicity of adapting 
the program to different monitor systems, but also by the 
ease of interpretation of subprogram functions by a user 
not completely familiar with the program. 

In addition to flow problems from subprogram to 
subprogram, and between core and tape, consideration 
was given to minimization of the quantity of data manipu- 
lated. Stiffness matrices, coordinate transformation ma- 
trices and mass matrices are by nature sparse matrices, 
having considerably more zero-valued off -diagonal ele- 
ments than nonzero values. Therefore, it is efficient both 
in core utilization and in input data preparation to ignore 
the zero-valued elements. Ignoring zero-valued elements 
cannot be achieved easily using index incrementing tech- 
niques which operate with complete matrix arrays. How- 
ever, it can be accomplished by assigning to each nonzero 
element a separate code that identifies the element by 
row and column. By this technique two words are needed 
for each matrix element (code and value), but since the 
matrices are sparse, the result is a net reduction in core 
storage used per matrix (Fig. 12). Basically, matrix algebra 
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Computer operation time may be reduced also by mini- 
mizing the number of times a given amount of data is 
handled. In attempting to reduce the data handling time 
it became evident that mathematical partitioning rather 
than structural partitioning was more efficient. Structural 
partitioning involves grouping data by row and column, 
each group representing a segment of the structure. In 
structural partitioning the operations are reflected in the 
pseudo instruction program, which becomes very large. 
When this happens tape search times become a significant 
factor in reducing program efficiency. 

12 12 C 13 13 d 

(b) CODE LISTING OF MATRIX 

Fig. 12. Illustration of matrix coding technique 

is camed out by "code matching," so that overall dimen- 
sional compatibility of matrices is not required. For 
example, in matrix addition, elements of each matrix 
with matching codes are added while the remainder of 
elements with nonmatching codes are relisted in the 
summed matrix (Fig. 13). Although this coding technique 
may seem to require considerable bookkeeping effort, the 
codes can be made up of identifying numbers that cor- 
respond to deflections or forces at nodes of the structure, 
so that code interpretation is apparent. In matrix prob- 
lems not associated with structures, a rational coding sys- 
tem must be defined for easy identification; this, however, 
is not a difficult task. 

The quantity of input data can be reduced by defining 
several optional coordinate systems that the user may 
select. For example, in a plate problem, coordinate axes 
with two axes in the plane of the plate reduce the geom- 
etry input data by one-third because only two coordinate 
values, instead of three, are needed to define the location 
of a node. This advantage does not exist, however, when 
analyzing doubly curved shells. 

II 12 I2 15 
I I  12 15 
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Fig. 13. Matrix addition using coded elements 

Mathematical partitioning is accomplished by data 
handling techniques incorporated in each subprogram. 
This technique evolved from the condition that the sub- 
programs manipulate matrices that either fit in-core or are 
larger-than-core. Basically, this technique involves par- 
titioning of groups of data by row only, which is con- 
sidered mathematical because no structural interpretation 
can be given. Since this operation is internal to the pro- 
gram, the user is unaware of the partitioning, so is not 
burdened with any data identification problems. 

In considering program accuracy, it must be recognized 
that insuring accuracy over a wide spectrum of problem 
types and sizes is a difficult task. This fact was recognized 
at  the onset of development of the SAS program, and 
considerable effort went into determining the possible 
errors that could occur and rational means of reducing 
them. A complete description and summary of the work 
done on error recognition and reduction is given in Ref. 4; 
hence, only a brief summary is included in this report. 
Basically five categories of errors are defined in Ref. 4, 
and each type is described briefly in following paragraphs. 

One major source of error is human mistakes in prepa- 
ration of input data, which may be designated input 
error. In preparing data for complex problems, there is 
generally considerable input of a repetitious nature, which 
is a situation conducive for errors. Fortunately, this type 
of error can be virtually eliminated by use of an input 
data diagnostic subprogram. The function of this sub- 
program is to check element data format, input matrix 
size and format, pseudo instruction format and tape as- 
signments, and overall compatibility between these pack- 
ages. A subprogram to perform this function has been 
developed for the SAS, and is designated the CHEX 
subprogram. This subprogram has also been coded to be 
operative as a separate diagnostic package on the IBM 
1620 computer with disk filing. This provision allows the 
checkout of input data decks at reduced cost on the 
IBM 1620 before submitting the problem for solution on 

15 



JPL TECHNICAL MEMORANDUM NO. 33-220 

the IBM 7094. The CHEX subprogram is a single or, in 
some cases, a two-pass system that detects most major 
errors in an input data deck and prints out appropriate 
comments that indicate each error made. 

A quite different effort was devoted to reduction of 
error in structural representation. The stiffness method 
when applied to analysis of shell-type structures is an 
approximate method, in that the triangular element 
that represents the local structure is not an exact repre- 
sentation. For example, for the flat-plate-triangular- 
element used in the SAS, establishing continuity of 
deformations between elements requires the use of linear 
displacement functions which, however, will not allow 
exact representation of the bending mechanism. Also, 
internal forces in the structure are determined (lumped) 
only at the nodes of each triangle, so the exact distribu- 
tion of forces within the element is not known, and an 
averaging technique must be used to define stresses. Other 
factors that influence this approximation are force equi- 

type of error, namely, that the triangular element is not 
exact in representing local structure, is termed discretiza- 
tion error. 

I librium, stress continuity, and field compatibility. This 

Means of reducing this type of error in the SAS cen- 
tered on deriving an adequate triangular element repre- 
sentation. The scope of this task was not fully recognized 
at the start of development, and three distinct element 
representations were generated before an acceptable 
model was determined. A further complication was the 
condition that any element representation could not be 
evaluated until the generation package, as well as most 
of the data manipulative subprograms were functional 
and checked out. 

The only means of reducing discretization error is to 
derive a better element representation than the one used. 
Thus, reduction of this error is contingent upon theoreti- 
cal developments in the field of the finite element method. 
In anticipation of likely theoretical developments in finite 
element representations, the format of the generation sub- 
program has been set up so that element changes and 
modifications can be incorporated easily. The triangular 
element representation now used in the SAS is derived in 
the Program Technical Document (Ref. 4). 

A third category of error, termed idealization error, is 
related to the manner in which the actual structure is 
idealized by the finite element array. In general, to mini- 
mize this error, the finite element breakdown should be 

coarser in regions where variables (deflections, curvatures, 
forces) change slowly and finer in regions where variables 
change rapidly. Orientation of triangles at boundaries, 
with respect to material and stress axes, and in regions of 
concentrated loads are other factors that should be con- 
sidered in defining the triangular array. Hence, it is appar- 
ent that much of the control of this error is a function 
of the initial problem setup, which is predicated upon the 
knowledge and experience of the user. A potential user 
might argue that as the grid size is reduced the repre- 
sentation approaches an exact one, and accurate answers 
are assured (Fig. 14). However, there are two conditions 
on this argument. First, if the grid size is reduced, the 
amount of input data increases and the sizes of matrices 
that must be manipulated increase possibly to an extent 
that the calculations exceed current computer capability. 
Second, when the matrices become large, the number of 
manipulations increases, and an error develops that is 
inherent in any repetitious calculation; namely, round-off 
error. This error is called the manipulative error and is 
the fourth type reported in Ref. 4. 

The manipulative error is basically a function of the 
conditioning of the matrices being manipulated, the 
mathematical procedures used in each subprogram, and 
the accuracy limits set on the computer. In the SAS pro- 
gram, due to operating time constraints, the accuracy 
limits have been established at eight places or what is 
termed “single precision” accuracy of the computer. The 
mathematical procedures used in the various subprograms 
of the SAS are based upon mathematical algorithms that 
are known to be efficient in computer applications. With 
regard to matrix conditioning, in structures problems, con- 
ditioning is normally good because of high attenuation in 
structural coupling. This effect results in matrices that 
are “near diagonal,” that is, only the off -diagonal elements 
near the main diagonal are nonzero, and are numerically 
less than their respective diagonal element values. Since 
the question of matrix conditioning depends upon the 
particular characteristics of individual matrices, it is 

( a )  COARSE GRID (b) FINE GRID 

Fig. 14. Structural idealization 
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difficult to establish methods of correction when ill- 
conditioning is encountered. In many cases, ill-condition- 
ing is due to the element breakdown selected to represent 
the structure; hence a corrective measure is to reidealize 
the structure rather than consider changing any of the 
manipulative operations. 

The fifth error classification is called interpretation 
error and is associated with the problem of interpreting 
the output or results of computations. Visualize, for a 
moment, preparing a large amount of input data for an 
extremely complicated problem, then feeding this data 
into the computer and half an hour later obtaining some 
answers. The question is now-how good are these an- 
swers? If approximate or estimated answers are not 
known from another source, then this question is not easy 
to answer. However, there are at least four controls that 
may be applied to interpretation of the results. First, the 
past experience of the program user may be helpful in 
establishing an “intuitive feel” for the range of answers 
expected. Second, equilibrium or orthogonality checks 
may be run to establish the validity of the results. This 
can be done readily by simply altering the pseudo instruc- 
tion program. Third, the problem can be rerun with a h e r  
or coarser element (triangular) grid to check convergence 
of the solution with the possibility of extrapolating the 
limiting answer if several solutions are obtained. Fourth, 
if an energy approach is used to define the mathematical 
model of the finite element, then in some cases potential 
and complementary energy approaches can be taken in 
which the answers obtained by the two approaches 
bracket the correct answer for the idealized structure. 
This procedure is called “the bounding technique” in 
finite element applications, and its use is predicated upon 
a rational energy approach being used to derive the 
mathematical model of a structural element. The bound- 
ing technique has been applied successfully to simple 
problems (Ref. 7), but remains a basic developmental task 
for complex elements such as the triangular element. At 
present, in the SAS, the first, second, and third control 
measures can be used to interpret results. The fourth 
control measure, the bounding technique, is being consid- 
ered for a follow on effort after more information and 
experience is gained in using the program developed in 
the earlier phases of work. 

5. Methods of Achieving Program Versatility 

Reference has already been made to the modular or 
chain approach being coupled with the pseudo instruction 
program to form the basis for a flexible computer pro- 
gram. The ability to solve a wide spectrum of problems 

is reflected in this form of flexibility. One extreme in 
program applicability is that a “black box” approach can 
be taken if the user is always solving a particular type of 
problem. The setup for a program of this type involves 
establishing first an efficient sequence of pseudo instruc- 
tions. Some error instructions as well as planned recovery 
points need to be included to allow for size variations in 
input data and recovery from computer terminating 
errors. Once the program is set up and checked out the 
ultimate user is merely instructed on input-output writeup 
and interpretation, and recovery procedures. With this 
approach the user is not required to know matrix algebra 
even though matrices may be required input. In the SAS, 
because the  ma^ coding system is related to the struc- 
tural idealization, the input matrices take on the appear- 
ance of tabulated data so that interpretation is possible 
without explicit use of the word “matrix.” The output data 
is also printed in tabular form so that an understanding 
of the meaning of the codes that accompany each element 
value is sufficient for interpretation. 

The other extreme in program usage is in the solution 
of the general matrix problem. Applicability of the SAS 
to solve general problems is contingent upon the functions 
performed by the manipulative subprograms. Hence, the 
user must be familiar with matrix algebra and the options 
and capabilities of the SAS subprograms. This informa- 
tion is provided by complete documentation of the manip- 
ulative functions in the Program Usage Document (Ref. 3) 
and of the mathematical algorithms in the Program Tech- 
nical Document (Ref. 4). By means of this option, prob- 
lems in any discipline may be solved using the SAS, 
provided the solutions can be effected using matrix 
algebra. 

Options in required input data are another aspect of 
program flexibility and center on the capability of select- 
ing coordinate systems that are compatible with the 
program being solved. In addition to latitude in selecting 
the coordinates to d e h e  structural geometry, other 
coordinate system options are: 

1. Selection of elastic axes when working with moniso- 
tropic materials. 

2. Specification of local coordinates for elements along 

3. Selection of coordinates along which deflections are 

These coordinate options in the SAS are important in 
different problems and each may be used in accord with 
user preference or problem constraints. 

which stresses are referenced. 

referenced. 
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The ease of incorporating extensions and modifications 
into the SAS program is also an important form of system 
flexibility. Basically there are two areas where this form 
of flexibility is needed. First, the modular format of the 
program library allows for addition of new subprograms 
by merely identifying the program in the master intelli- 
gence system for pseudo instruction interpretation, and 
assigning a chain number to the subprogram for locating 
it on the library tape. The other area where expansion is 
likely is in the generation subprogram library of stiffness 
elements. Expansion problems in this area center on 
changes in the input data. However, the input data 
format of the SAS has been planned and set up so that 
any type of element, including the three-dimensional 
solid, can be put in the library without any format 
changes. 

C. Methods of Insuring Program Reliability 

The type of reliability of concern here is that associated 
with the functioning of the entire program. Since a com- 
puter program is merely a set of instructions that the 
computer is slave to follow, once all of the logic and flow 
options in the instructions have been tested and proven 
to be correct, reliability is assured in the sense that a 
submitted problem will be properly executed. The only 
variants are then the validity of the input data and the 
functioning of the computer itself, which occasionally 
errors, for which the recovery feature is designed to 
accommodate. 

For large programs with numerous flow patterns and 
options, such as the SAS, checkout is an extensive effort. 
In the checkout of the SAS, three levels of problems were 
generated and run. The function of the first level of prob- 
lems was to establish the rationale of the logic within 
each subprogram. Next, with the subprograms grouped 
in a chain library, the second level of problems checked 
the compatibility between subprograms (in various se- 
quences). Finally, because the program was designed to 
manipulate large blocks of data that could fill and exceed 
core, checkout of program capacity dictated the third 
level of test problems. The test problem for this third level 
of checkout was controlled by contract agreement. 
The single problem that was to be run was formulated 
and set up by JPL personnel with WDL approval and 
supervision. The problem was run on the JPL computer 
complex, and the results were subject to JPL approval. 

It was recognized that one comprehensive test problem 
could not be formulated that would check all options of 
the SAS. Therefore, a support effort was planned and 

subsequently integrated with overall program develop- 
ment. This activity by JPL personnel was intended to 
aid WDL in certain critical areas and orient JPL person- 
nel on details of the program functions and operations. 
In addition to the checkout effort already described, this 
support function involved the following participation by 
JPL technical representatives: weekly technical meetings 
with WDL personnel to discuss any matters relating to 
program development, review of technical and program- 
ming documents as they were generated during develop- 
ment, and participation in writeup of some of the key 
subprograms of the SAS program. During this checkout 
phase, JPL assigned from one to three engineers and one 
programmer as needed to perform the various functions. 
In review, it is felt that this support effort not only effec- 
tively oriented the JPL technical personnel in understand- 
ing the SAS program operation, but also it served as a 
check and balance to increase the reliability and to speed 
up the checkout of the program.' 

Checkout of system manipulative subprograms pro- 
ceeded with the normal types of errors causing difficulty. 
Some of the program features were very useful in check- 
out, particularly the recovery feature. Cross checking of 
different subprogram outputs was used advantageously. 
For example, the output from the subprograms used to 
solve simultaneous equations (CHOL, ITER) was com- 
pared to the matrix decomposition subprogram (CHIN) 
by proper selection of the set of equations. Vector 
orthogonality and matrix symmetry checks, core dump 
and data tape analyses and other standard techniques 
were used to check the logic and flow of the program. 

The other phase of the program, the generation pack- 
age, was the source of two fundamental problems that 
impeded system checkout. These problems were the deri- 
vation of an adequate triangular element representation 
and the rational distributing of nodal forces over each 
triangle to obtain accurate stress values. The problems 
associated with the triangular element representation 
were presented in Section IV. Although displacement 

'Several activities have resulted from JPL's participation that com- 
plement the primary work on program development. For example, 
JPL documentation of the test problem input data and solutions 
supplements the technical and usage reports prepared by WDL. 
During program checkout, .additional small test problems were sub- 
mitted by JPL personnel to verify the operation and flow of certain 
program options not tested by the comprehensive test problems. 
In having the opportunity to review the technical aspects of the 
methods used in the SAS, JPL personnel have been able to initiate 
supporting advanced development and research projects and to 
better plan the direction that should be taken in extending and 
improving the SAS program to meet future analysis needs. 

1 8  



JPL TECHNICAL MEMORANDUM NO. 33-220 

values can be determined very accurately (Ref. 5), the 
determination of accurate stresses is a well-recognized 
problem in finite element methods, and for many element 

types no exact procedure has been developed. In the SAS, 
the stresses are average values determined by techniques 
reported in the Program Technical Document (Ref. 4). 

V. ROLE OF THE ENGINEER IN STRUCTURAL ANALYSIS APPLICATIONS 
OF THE SAS PROGRAM 

As is true in any compqter program a certain amount 
of basic data must be supplied to the system to initiate 
the generation and solution routines. Understandably, 
since the elements used in shell-structure idealizations 
are more complicated than, say, the beam elements used 
in frame-structure analyses, the amount of input data for 
the SAS exceeds that of corresponding frame analysis 
programs. In fact, the beam, bar, and torque tube ele- 
ments, which are types of elements needed in the analysis 
of frame structures, are a part of the element library in 
the SAS, and so constitute a fractional part of the total 
input. 

In general, the procedures involved in establishing 
input for frame-type structures are well known, so in the 
following discussion emphasis will be placed on the prob- 
lems of input preparation for shell-type structures. In 
setting up a shell-type problem for the computer, one of 
the first tasks of the analyst is establishing a triangular 
array that will adequately represent the characteristics of 
the structure. This must be done within the constraints on 
matrix size, and, consequently, may involve the use of: 
structural planes of symmetry, local refinements in tri- 
angular grid sizes, modal convergence techniques, mathe- 
matical partitioning, and other methods to avoid bulky 
manipulative operations. Once the triangular grid is 
established, the next step is the numbering of nodes. This 
is extremely important since the matrix row-bandwidths 
are established by the nature of this numbering sequence. 
In general, the optimal arrangement is that in which 
adjacent nodes have node numbers that are close in 
value. Procedures for testing the quality of particular 
node numbering arrangements are given in Ref. 4. These 
procedures have been defined thoroughly so that this 
calculation can be performed by engineering-aide per- 
sonnel. After the triangular grid and node numbering 
sequence have been defined, the element input data can 
be prepared, also by engineering-aide personnel. 

The remaining tasks of the engineer are to select the ap- 
propriate set of pseudo instructions and to write the vari- 
able transformation matrices (in tabular form.) The 
variable transformation matrices are used to impose 
the boundary and symmetry conditions of the problem 
and to eliminate any rigid-body modes. Several examples 
of variable transformation matrices that were used to 
solve the program test problems are given in Ref. 5. 

The structural test problem of Phase I may be cited to 
point out some of the considerations that should go into 
setting up a problem for the SAS. The test problem was 
to determine the deflections and stresses of a shallow 
spherical shell that was clamped at its edge and subjected 
to two loading conditions: a uniform pressure loading and 
a thermal loading (Fig. 15). 

Observing that the loadings are axisymmetric, hence, 
the deflections of the shell will be axisymmetric, it is im- 
portant to make use of this symmetry to reduce the 
amount of input data. To subdivide a small sector of the 
shell rather than the entire shell amounts to a significant 
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reduction in the number of triangles used in the idealiza- 
tion. However, if only a sector of the shell is idealized, 
then symmetry boundary conditions (along its meridional 
edges) must be imposed so that the influence of the part 
of the shell that is removed is reflected in the behavior 
of the sector. 

In establishing the array of triangular elements, it was 
recognized that deflections and stresses would vary con- 
siderably more in the vicinity of the clamped edge than 
in the central region of the shell. For the test problem, 
a 20-deg sector of the shell was selected and was sub- 
divided into the triangular array shown in Fig. 11. In 
general, values of stresses are referenced to the center- 
of-gravity of each triangle so that within the two-inch 
region next to the clamped edge eight distinct sets of 
stresses along the shell radius were determined. 

Basically, the work involved in preparing the input data 
for this problem consisted of: 

1. Establishing the triangular array for which the co- 
ordinate distances to each node were computed 
based upon a given reference coordinate system. 

2. Numbering the nodes (Fig. 11). 

3. Describing the material of the shell including elastic 
moduli, coefficient of thermal expansion, and mass 
density. 

4. Selecting appropriate boundary and symmetry con- 
ditions and expressing these constraints in the form 
of a variable transformation matrix (Ref. 5) .  

This work, along with adapting the appropriate set of 
pseudo instructions can be completed in two or three 
days by an engineer and engineering-aide familiar with 
the data formats. 

The SAS program has been developed purposely to 
possess the generality needed to incorporate many diverse 

structural conditions; however, with this advantage comes 
the disadvantage of a more complex input data format. 
That is, versatility in computer applications implies use 
of additional input specifications to accommodate the 
various program options. Consequently, the analyst may 
be required to supply more input data using the SAS 
than whzt he may consider a minimal amount. A good 
example of this is that a minimal input of elastic constants 
might be Young's Modulus and Poisson's Ratio when the 
material is isotropic. However, the stress-strain law used 
in the SAS is general enough to represent an aeolotropic 
material (13 elastic constant), so that the 13 constants must 
be computed for an aeolotropic material as well as for 
simpler material representations. However, for any given 
material this calculation need only be performed once, 
since these data can be retained in a material table which 
may be used in all subsequent problems as required. 

Finally, it is well to mention that the work involved 
in preparing input data for a computer program such as 
the SAS should be weighed against any alternatives of 
finding solutions to the same accuracy by other methods. 
For structural problems involving laminated or stiffened 
structures, cutouts, concentrated or asymmetric loads, 
local support conditions, and other non-obliging condi- 
tions for closed form or numerical integration solutions, 
the SAS or any comparable program is the only means of 
obtaining approximate answers. Therefore, one addi- 
tional task of the analyst is to dccidc if the problem to 
be solved is appropriate for the SAS program or should be 
solved using other methods or other computational tools 
of a combination of all. 

Convergence on minimal analyst effort is the goal of 
most program developers, and it is anticipated that as the 
SAS program is updated by conditions found through 
usage, changes will be made that will refine and condense 
the input-output format. However, within the framework 
of a given computer system, input-output format can be 
condensed only so far, since a certain amount of data must 
invariably be supplied to the computer, which rates as a 
computational tool and not as a knowledgeable entity. 
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